

Pergamon Tetrahedron Letters 42 (2001) 3471–3474

TETRAHEDRON LETTERS

Orbital control of π -facial selectivity in Diels–Alder reactions of cyclopentadienes having $C(=\overline{O})$ YR substituents at the 5-positions

Masaru Ishida, Masakazu Sakamoto, Humihiro Hattori, Minako Shimizu and Satoshi Inagaki*

Department of Chemistry, *Faculty of Engineering*, *Gifu University*, *Yanagido*, *Gifu* 501-1193, *Japan* Received 25 January 2001; revised 2 March 2001; accepted 9 March 2001

Abstract— π -Facial selectivity in Diels–Alder reactions of cyclopentadienes having $C(=O)$ YR substituents at the 5-positions was predicted on the basis of the orbital mixing rule and was substantiated experimentally. The selectivity was disclosed to be highly dependent on the relative orbital energy between π_{HOMO} of the diene and n_{Y} of the substituent. © 2001 Elsevier Science Ltd. All rights reserved.

Diels–Alder reaction is one of the most important methods for organic synthesis. Much attention has been paid to disclose the origin of π -facial selectivity in the reactions of dienes having an unsymmetrical π -plane.¹ We have been investigating the reactions of 5-substituted cyclopentadienes as the simplest dienes and proposed that the deformation of frontier molecular orbitals (FMO) of dienes is the major contributor to the selectivity.^{2,3} The orbital mixing rule has been successfully applied to predict the deformation. We will predict the π -facial selectivity in the reactions of cyclopentadienes **1** (and **2**) having $C (=O)YR$ substituents at the 5-positions. The prediction will be confirmed by theoretical calculations and by experimental observations.

In the prediction of the FMO of the dienes, the interactions between four molecular orbitals, namely the π -HOMO of the diene, the σ -orbitals of the carbon framework, the n-orbital of Y, and the π -orbital of $C=O$, were taken into account (hereinafter referred to as π_{HOMO} , σ , n_{Y} , and $\pi_{\text{C=O}}$, respectively).⁴

According to the orbital mixing rule, the deformation of FMO takes place by the mixing of π_{HOMO} and σ through interaction with the substituent orbital n_Y . Participation of the second substituent orbital $\pi_{C=O}$ perturbs this mixing to determine the final deformation with a dependence on the relative orbital energy between π_{HOMO} and n_{Y} (Fig. 1).

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $S0040 - 4039(01)00421 - X$

When π_{HOMO} is high, π_{HOMO} mainly contributes to the FMO. π_{HOMO} combines with both of the low-lying substituent orbitals, n_Y and $\pi_{C=0}$, out of phase. The mixing of the low-lying σ to π_{HOMO} takes place in such a way that it is out of phase with n_Y and $\pi_{C=0}$ to give the FMO of the whole diene (since π_{HOMO} lies higher than σ). It is noteworthy that the component orbitals of the C(=O)YR substituent, n_Y and $\pi_{C=O}$, participate in the mixing. Since $\pi_{C=O}$ has the same phase with n_Y, the mixing of σ is enhanced to give FMO, which favors the reaction at the *syn* side of the substituent (case A: $\Psi(\text{FMO}) = \pi_{\text{HOMO}} - n_{\text{Y}} - \pi_{\text{C}=0} + \sigma$). This is the case with dienes **1a**–**d**.

On the other hand, when n_Y lies closely to π_{HOMO} , the interaction between π_{HOMO} and n_{Y} is strong. Both orbitals contribute considerably to the FMO. The combined orbital, $\pi_{\text{HOMO}}-n_{\text{Y}}$, is a component of FMO. The $\pi_{C=O}$ orbital interacts with the n_Y more strongly rather than with the π_{HOMO} due to the spatial proximity. The

Keywords: cyclopentadiene; Diels–Alder reactions; orbital effect; stereocontrol; substituent effect.

^{*} Corresponding author. Fax: 81-58-230-1893; e-mail: inagaki@ apchem.gifu-u.ac.jp

phase of $\pi_{C=0}$ is determined by the relation with n_Y rather than π_{HOMO} in such a way that it is out of phase with n_Y (viz. in phase with π_{HOMO}). As a result, $\pi_{C=O}$ is in the opposite phase with n_Y , while the orbitals are in phase with each other in case A. The mixing of σ , caused by the interaction with $\pi_{C=0}$ and n_{Y} , is diminished by each other. The deformation of FMO is predicted to be reduced (case B: $\Psi(\text{FMO})=\pi_{\text{HOMO}}$ $n_Y+\pi_{C=0}+\sigma$). In this case, the orbital-phase environment around the reaction centers lower the $syn \pi$ -facial selectivity or results in *anti* π -facial selectivity.^{1b,2} The out-of-phase interaction between the n_y segment of the HOMO of the diene and the LUMO of a dienophile significantly destabilizes the *syn* attack transition states. This is the case with dienes **1e**–**g**, while **1g** has the $C(=\S)$ SMe substituent.

The predicted FMO deformation was examined by ab initio molecular orbital calculations. The dienes **1b** and **1f** were chosen as typical examples of dienes of cases A and B, respectively. The molecular geometries of the dienes (*Cs*) were optimized by ab initio molecular orbital calculation at the RHF/6-31G* level (Fig. 2).⁵ The contour maps at the sections of $x=0.500$ Å of **1b** and **1f** clearly indicated the in-phase and out-of-phase relationship between n_Y and $\pi_{C=O}$, respectively.⁶ The difference between the maps $(x=0.891 \text{ Å})$ is clear. Small contours of the highest value appeared in the map of **1b** (at the *syn* side) but not in the map of **1f**, thus showing that the FMO of **1b** is more effectively deformed than that of **1f**.

The prediction was examined experimentally. To avoid complication due to [1,5]-hydrogen rearrangement, the corresponding pentamethylcyclopentadienes **2a**–**g** were prepared and subjected to reaction with *N*-phenylmaleimide (NPM) in non-polar solvents, such as carbon tetrachloride and/or toluene (Scheme 1). The progress of reaction was followed by TLC. After completion of reaction,⁷ the residues were analyzed by ${}^{1}H$ NMR to determine the ratios and yields of the products 8 (Table 1).

Consistent with the prediction, reactions of case A dienes **2a**–**d** and case B dienes **2e**–**g** predominantly afforded the corresponding *syn* and *anti* attack products, **3** and **4**, respectively.

Figure 1. Direction of non-equivalent extension of the FMO of cyclopentadienes having $C = OYR$ substituents. Phase relationship: ----, in phase; —, out of phase. Orbital mixing: \rightarrow , major interaction; —>, minor interaction (and ---->).

Figure 2. Contour maps of the sections $(x=0.500$ and 0.891 A) of the FMO of dienes **1b** and **1f** at the RHF/6-31G* level (*Cs*). The Cp ring is in the *xy* plane and C-1 and C-4 carbons are on the *x*-axis at the space coordinates (A) of (1.177. 0. 0) and (−1.177. 0. 0), respectively. The absolute value of the largest contour line is 5.0×10−³ AU. The heights of adjacent contours differ by a factor of two. Atoms in substituents: filled circle, C; open circle, O; shaded circle, S.

Scheme 1. Reactions of $2a-g$ with NPM. Solvent: CCl_4 and/or toluene.

Table 1. Diels–Alder reactions of the dienes **2a**–**g** with NPM

Diene	YR	syn:anti ^{a,b,c} 3:4	Prediction (case)	Diene	YR.	syn:anti ^{a,b,c} 3:4	Prediction (case)
2a	OH ^d	$80:20^{\circ}$ $78:22^{f}$	syn(A)	2e	NH ₂	$26:74^e$ $27:73^f$	Low-syn or <i>anti</i> (B)
2 _b	OMe	$84:16^{f}$	syn(A)	2f	SMe	1:99 ^f	Low-syn or <i>anti</i> (B)
2c	OPh	$83:17^e$ $84:16^{f}$	syn(A)	2g	SMe $[C(=\mathbb{S}) instead of C(=\mathbb{O})]$	0:100 ^f	Low-syn or anti (B)
2d	OAr $(Ar = 4-MeOC6Ha)$	$84:16^e$	syn (A)				

^a All products gave correct elemental analyses or high-resolution mass spectra.

 b The ratio was determined from 400 MHz (or 270 MHz) ¹H NMR spectra of the crude mixture.

^c The ¹ H NMR spectra showed that the reactions proceeded quantitatively (exception: **2g**, yield 70%).

^d See Ref.3e

 e^e Solvent: CCl₄.
^f Solvent: toluene.

In conclusion, the results open a highly applicable approach to designing orbital control of π -facial selectivity in organic reactions.

References

- 1. Reviews: (a) Ishida, M.; Inagaki, S. *J*. *Synth*. *Org*. *Chem*. *Jpn*. **1994**, 52, 649–657; (b) Ohwada, T. *Chem*. *Rev*. **1999**, 99, 1337–1375; (c) Cieplak, A. S. *Chem*. *Rev*. **1999**, 99, 1265–1336; (d) Fallis, A. G.; Lu, Y.-F. In *Advances in Cycloaddition*; Curran, D. P., Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, pp. 1–66.
- 2. Inagaki, S.; Fujimoto, H.; Fukui, K. *J*. *Am*. *Chem*. *Soc*. **1976**, 98, 4054–4061.
- 3. (a) Ishida, M.; Aoyama, T.; Kato, S. *Chem*. *Lett*. **1989**, 663–666; (b) Ishida, M.; Beniya, Y.; Inagaki, S.; Kato, S. *J*. *Am*. *Chem*. *Soc*. **1990**, 112, 8980–8982; (c) Ishida, M.; Aoyama, T.; Beniya, Y.; Yamabe, S.; Kato, S.; Inagaki, S. *Bull*. *Chem*. *Soc*. *Jpn*. **1993**, 66, 3430–3439; (d) Ishida, M.; Kakita, S.; Inagaki, S. *Chem*. *Lett*. **1995**, 469–470; (e) Ishida, M.; Tomohiro, S.; Shimizu, M.; Inagaki, S. *Chem*. *Lett*. **1995**, 739–740; (f) Ishida, M.; Kobayashi, H.; Tomohiro, S.; Wasada, H.; Inagaki, S. *Chem*. *Lett*. **1998**, 41–42; (g) Ishida, M.; Kobayashi, H.; Tomohiro, S.; Inagaki, S. *J*. *Chem*. *Soc*., *Perkin Trans*. ² **2000**, 1625–1630.
- 4. The π_{C-O}^* orbital was not considered because of the large energy gap between $\pi_{C=O}^*$ and π -HOMO.
- 5. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W. B.; Johnson, G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995.
- 6. Wasada, H.; Tsutsui, Y. *Bull*. *Fac*. *Gen*. *Educ*., *Gifu Univ*. **1996**, 33, 145–158.
- 7. The reaction of diene **2g** proceeded very slowly. After 190 h, the reaction gave **4g** in 70% yield.
- 8. Selected spectroscopic data: Compound **3b**: mp 157.2– 157.7°C (colorless solid from hexane-AcOEt); ¹H NMR (400 MHz, CDCl₃) δ 1.00 (s, 3H, CH₃), 1.55 (s, 6H, 2CH3), 1.61 (s, 6H, 2CH3), 3.32 (s, 2H, 2CH), 3.71 (s, 3H, OCH3), 7.04–7.44 (m, 5H, aromatic); Compound **3b** displayed an NOE between the methyne protons at δ 3.32 and the methoxy protons at δ 3.71; ¹³C NMR (100) MHz, CDCl₃) δ 11.5, 12.4, 12.9, 51.0, 51.4, 59.3, 72.9, 126.5, 128.3, 129.0, 131.9, 134.4, 174.5, 176.1; MS (CI) *m*/*z* 368 (M⁺ +1); MS (EI) (20 eV) *m*/*z* 367 (M⁺). Anal. calcd for $C_{22}H_{25}NO_4$: C, 71.91; H, 6.86; N, 3.81. Found: C, 71.77; H, 6.76; N, 3.80. Compound **4b**: mp 114.5– 115.5°C (colorless solid from hexane-AcOEt); ¹H NMR

. .

(400 MHz, CDCl₃) δ 1.07 (s, 3H, CH₃), 1.58 (s, 6H, 2CH3), 1.63 (s, 6H, 2CH3), 3.04 (s, 2H, 2CH), 3.60 (s, 3H, OCH3), 7.04–7.44 (m, 5H, aromatic); Compound **4b** displayed an NOE between the methyl protons at δ 1.07 and the methyne protons at δ 3.04; ¹³C NMR (100 MHz, CDCl₃) δ 11.3, 13.3, 13.5, 50.3, 51.3, 59.2, 73.8, 126.5, 128.5, 129.1, 131.9, 136.8, 173.9, 176.1; MS (CI) *m*/*z* 368 $(M^+ + 1)$; MS (EI) (20 eV) m/z 367 (M⁺). Anal. calcd for C₂₂H₂₅NO₄: C, 71.91; H, 6.86; N, 3.81. Found: C, 71.63; H, 6.91; N, 3.69.